
Introduction to Java V:
Abstract Classes and Interfaces

CS 1025 Computer Science Fundamentals I

Stephen M. Watt
University of Western Ontario

Behaviour Hierarchy Problems

• Sometimes there will be a set of subclasses that share a
base class, but where it only makes sense to have objects that
belong to the subclasses.

There will never be an object belonging just to the base class.

• “Abstract” base classes are used for this situation.• “Abstract” base classes are used for this situation.

• Sometimes we want a set of classes to share some behaviour
but they do not share a base class.

• “Interfaces” are used for this situtation.

Abstract Classes

• For Sudoku we can have

public abstract class Slice {

abstract public int size();

abstract public int getValue(int i);

}

public class RowSlice extends Slice {public class RowSlice extends Slice {
RowSlice(Tableau t, int rowno) { ... }
int size() { ... }
int getValue(int i) { ... }

}

public class ColumnSlice extends Slice {
ColumnSlice(Tableau t, int colno) { ... }
int size() { ... }
int getValue(int i) { ... }

}

Abstract Classes II

• Methods in an abstract class may either be “abstract,”
in which case no body is given, just a semi-colon.

• Normal (non-abstract) methods may be given that use
other normal methods and abstract methods to give a
common implementation.

Non-Abstract Methods in Abstract Classes

• An example:

abstract class DoIt {

protected String _afix;

protected DoIt(String afix) {_afix = afix; }

abstract public void once(String s);

public void twice() {

once("First time");

once("Second time");

}

}

Non-Abstract Methods in Abstract Classes II

class Say extends DoIt {

public Say(String afix) { super(afix); }

public void once(String s) {

System.out.println(_afix+s);

}

}}

class Sing extends DoIt {

public Sing(String afix) { super(afix); }

public void once(String s) {

System.out.println(_afix+s+_afix);

}

}

Non-Abstract Methods in Abstract Classes III

public class Prolix {

public static void main(String[] args) {

DoIt say = new Say("Ahem! ");

DoIt sing = new Sing("...Tra-la-la...");

say.twice();

sing.twice();sing.twice();

}

}

Ahem! First time

Ahem! Second time

...Tra-la-la...First time...Tra-la-la...

...Tra-la-la...Second time...Tra-la-la...

Abstract Classes Conclusion

• An abstract class is used to collect behaviour, but when
there will not be any objects belonging just to that class.

• New objects can be allocated that belong to non-abstract
subclasses, but not to the abstract base class itself.
(E.g. can do “new Sing” or “new Say” but not “new DoIt”)

• Can declare variables, parameters, etc to have an abstract
class as their type.

• This means that the actual values must be objects of
some subclass of the abstract class, but we don’t know
(or don’t care) which.

Interfaces

• Interfaces are like abstract classes except:
– All methods are implicitly public and abstract.

– All fields are implicitly public static final.

• These restrictions allow:
– A common situation to be handled elegantly.

– An efficient language implementation that does not impose
any conditions on the layout of the objects.

– Classes to implement multiple interfaces.

Interface Example
interface Vocal {

void sing (String s);

void chant(String s);

}

interface Animal {

boolean canFly();

int nLegs();

}

class Dog implements Vocal, Animal {

private String _name;

Dog(String name) { _name = name; }

public void sing(String s) {

System.out.println(_name + " sings: Aroooo " + s);

}

public void chant(String s) { sing(s); sing(s); sing(s); }

public boolean canFly() { return false; }

public int nLegs() { return 4; }

}

Interface Example II

public class Independent {

public static void main(String[] args) {

Dog d = new Dog("Rover");

vocality(d);

animality(d);

}

// This method requires the Vocal interface.

public static void vocality(Vocal v) {

v.sing("O Canada");

}

// This method relies only on the Animal interface.

public static void animality(Animal a) {

System.out.println("Number of legs = " + a.nLegs());

}

}

Interfaces

• Interfaces are similar to abstract classes in that:
– Variables and parameters may be declared to have an interface.

– Classes can implement interfaces and thereby support
polymorphic programming.

– Interfaces can extend other interfaces
(leading to the idea of sub-interfaces and super-interfaces.)(leading to the idea of sub-interfaces and super-interfaces.)

• Interfaces are different from abstract classes in that:
– Classes may directly implement several interfaces,

but can directly extend only one base class.

– All methods in interfaces are abstract.

– Classes “implement” interfaces and “extend” classes.

